If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+50t+16
We move all terms to the left:
0-(-16t^2+50t+16)=0
We add all the numbers together, and all the variables
-(-16t^2+50t+16)=0
We get rid of parentheses
16t^2-50t-16=0
a = 16; b = -50; c = -16;
Δ = b2-4ac
Δ = -502-4·16·(-16)
Δ = 3524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3524}=\sqrt{4*881}=\sqrt{4}*\sqrt{881}=2\sqrt{881}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{881}}{2*16}=\frac{50-2\sqrt{881}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{881}}{2*16}=\frac{50+2\sqrt{881}}{32} $
| -p+38=-(6p-8) | | 15x-2=11x+24 | | 1/2x5xx12=200 | | 3(y+4)-7y=24 | | 8/x+3=x+8/x-4 | | 23+3x=8(3x-5) | | 2(y-5)-6=-2(-9y+4)-4y | | 8x+4(x-6)=12 | | v+3=84 | | 1/2n=21/2 | | c/2+2=-1 | | 17x-11x+4x-8x-x=11 | | 2=4c-10 | | 2x-7=5x-9 | | 3/5p+1/59(40-p)=0 | | 1/9h-18=34 | | 2.5+x=-5.7 | | 14r+-8r+6r+-19r=14 | | 4=-6k+1+3k | | g/2-11=-9 | | 25^-x+1=125 | | –18+7t=18+11t | | 11b-9b+-13b=-11 | | 4z+–14z=–10 | | n/2-6=-4 | | -1=p+4-3 | | ((5-x)/(2x))+1=0 | | 3^-3r=3^5 | | 4.9x^2-16x+7=0 | | 16u-8u+3u-7u=20 | | 3(=q+6)= | | 22w+–19=3 |